Insecticide soil treatment efficacy trials on *Agriotes* spp. wireworms

Albert Ester, Klaas van Rozen & Hilfred Huiting

IWGO, Freiburg, Germany. 25 October 2011

Outline of the talk

Wireworm damage in practice

 Laboratory trials: Contact efficacy Attractiveness/feeding efficacy

Advantages wireworm control with Goldor Bait

Wireworm damage

Arable crops: Potato crop Maize Cereals Vegetable crops: Onions • Carrots • Brassicas Tomatoes Tropical crop: Sugarcane

PPLIED PLANT RE

ARCH

ENINGEN UR

Wireworm damage in Western Europe

- Fields with high population density:
 - April November
- Activity of wireworms undepending:
 - Temperature
 - Soil moisture, except of water saturated soil
- Attractant:
 - CO2-production by:
 - seed germination
 - roots
 - potato tubers
- Long life cycle: 2 6 years

Laboratory trials: Contact efficacy

- Aim: testing the efficacy of insecticides applied as a soil treatment against different wireworm species:
 - Agriotes obscurus
 - Agriotes lineatus
 - Agriotes sputator
 - Agriotes sordidus

Treatments (g a.i. per ha)

Untreated

:0

: 600

- Chlorpyrifos (480 EC)
- Thiamethoxam (350 FS)
- Imidacloprid (350 FS)
- Fipronil (500 FS)
- Clothianidin (250 FS)

- : 50, 100, 200, 300
- : 50, 100, 200, 300
- : 50, 100, 200, 300
- : 50, 100, 200, 300

Materials & Methods

- Soil type
- Soil characteristics
- Soil humidity
- Soil layer
- Amount of water at spraying
- Air temperature
- No. of replicates
- No. of wireworms/subplot

- : sandy
- : 5 % clay, 1.7 % o.m.
- : 15 %
- : 5 cm soil depth
- : 400 l/ha
- : 20°C
- : 3 (two subplots A and B)
- : 3

Materials & Methods

Stew box for spraying

Trial boxes containing soil and wireworms

Materials & Methods

Spray cabinet with nozzles

Broadcast soil treatment

No. of dead A. obscurus 3 w.a.t., 13 March 2009

Dose Treatments	0	50	100	200	300	600
Untreated	0.7					
Chlorpyrifos						2.0
Thiamethoxam		0	0	0	0.3	
Imidacloprid		0.3	0	0	0	
Fipronil		3.0	3.0	3.0	3.0	
Clothianidin		0.0	0.3	0.7	0.0	

No. of dead A. lineatus, 3 w.a.t., 13 March 2009

Dose Treatments	0	50	100	200	300	600
Untreated	0					
Chlorpyrifos						2.7
Thiamethoxam		0.3	0.3	0	0	
Imidacloprid		0	0.3	0	0.3	
Fipronil		3.0	3.0	3.0	3.0	
Clothianidin		0	0	0	0	

No. of dead A. sputator 3 w.a.t., 1st Sep. 2009

Dose Treatments	0	50	100	200	300	600
Untreated	0.3					
Chlorpyrifos						3.0
Thiamethoxam		1.7*	1.3	1.3	0.3*	
Imidacloprid		1.0	1.0	0.3	0.3	
Fipronil		3.0	3.0	3.0	3.0	
Clothianidin		1.0	1.3	1.0	0.7	

* Dose response

No. of dead A. sordidus 3 w.a.t., 19 Oct 2009

Dose Treatments	0	50	100	200	300	600
Untreated	0					
Chlorpyrifos						3.0
Thiamethoxam		0.3	0.3	0	0.3	
Imidacloprid		0.3	0	0	0	
Fipronil		2.0	1.7*	3.0*	3.0	
Clothianidin		0	0	0.3	0.7	

Wireworm mortality after three weeks

Conclusions after 3 weeks exposure

- Fipronil at doses of 50, 100, 200 and 300 g a.i. / ha is 100 % lethal against the wireworm species tested.
 A. sordidus at 50 and 100 g a.i. / ha not!
- Chlorpyrifos 600 ml a.i. / ha is as lethal as fipronil at a dose of 50 g a.i. / ha
- Imidacloprid, clothianidin and thiamethoxam in the doses of 50, 100, 200 and 300 g a.i. / ha are not lethal to the tested wireworm species
 - A. sputator may be more susceptible!
- The results are generally similar for all four species

Mode of penetration of fipronil?

- 1. Body contact by movement through soil.
- 2. Intake by feeding on small amounts of soil or organic matter
- 3. Insect can not indentify the active ingredient

Lab. trials attractiveness/feeding efficacy

Aim: establishing the control effect of four insecticides – formulated as baited pellets – on mortality through oral uptake on four wireworm species:

- Agriotes obscurus
- Agriotes lineatus
- Agriotes sputator
- Agriotes sordidus

Treatments

Treatment	Formulation	Dose kg/ha formulated
Untreated	-	-
Thiamethoxam	ld 4005652	10
Clothianidin	ld 1712130	10
Imidacloprid	ld 275792	10
Fipronil	BAS 350 BA/AZ/AY/AX I	10

Treatments

Content & formulation insecticides	Application rate g a.i. / ha
0.0001% GB	0.01
0.001% GB	0.1
0.01% GB	1
0.1% GB	10

Materials and methods

- Soil type
- Soil characteristics
- Soil layer
- Amount of soil/tray
- Soil humidity
- Air temperature
- Trial design
- Wireworms

- : sandy
- : 5 % clay, 1.7 % o. m., pH 7.8
- : 5 cm soil depth
- : 900 g
- : 15 %
- : 20°C
- : 3 replicated block design
 - 2 subplots per plot
- : three / subplot

Materials and methods

Trial boxes with wireworm activities

Wireworm mortality (g a.i./ha) after two weeks

Wireworm mortality, Fipronil g a.i./ha

Overview: After two weeks, Fipronil g a.i./ha

Conclusions bait

Fipronil at 10 g a.i./ha highly effective and high mortality
 Lower Fipronil rates also effective – mortality and activity reduction

- Except 0.01 and 0.1 g a.i./ha at A. sordidus
- Efficacy thiamethoxam depending on target species
 - Least effective at *A. sordidus*, highest efficacy *A. sputator*
 - In general considerably less effective than fipronil
- Clothianidin and imidacloprid equally effective
 - No efficacy at A. obscurus and A. sordidus
 - Limited efficacy at A. lineatus and A. sputator

Practical use and advantages of the Goldor Bait

- At high wireworm densities after several years of grassland production
- Fipronil bait formulation results in a reduction of a.i. for at least 95 % compaired to chlorpyriphos.
- Fipronil kills the wireworms immediately, while the neonicotinoids does not.
- Substantial reduction of the wireworm population at high population densities in the following years
- Sufficient protection of the crop against wireworm damage e.g. maize and potatoes

Thank you for your attention.

Project supported and funded by BASF SE Company

For more information:

Ester Research & Consultancy insect + slug control

Albert Ester a.ester@tele2.nl

